PLFS: The Parallel
Log-Structured
Filesystem

Milo Polte

John Bent, Garth Gibson, Gary Grider, Ben McClelland,
Paul Nowoczynski, James Nunez, Meghan Wingate

Carnegie Mellon Parallel Data Laboratory
Los Alamos National Laboratory
Pittsburgh Supercomputing Center

INSTITUTE FOR RELIABLE
IRH HIGH PERFORMANCE
INFORMATION TECHNOLOGY

Carnegie Mellon “‘
Parallel Data Laboratory

LA-UR-08-07314, LA-UR 09-02117, LA-CC-08-104

Computational Science = Always Hungry

\ L — e

® LANLs Roadrunner '

® Petaflop machine, tens of thousands of cores

® Building bigger machines isn’t free

® Higher processor count

® More Failures
® Bigger, more frequent checkpoints

® Also bigger simulation/visualization output

® Having time to compute requires fast |[/O!

Lifetime of a Scientific App

Compute

a Compute%Compute %
Compute

Came?ie Mellon
Parallel Data Labo

Parallel Apps = Parallel Writes

® VWrites are concurrent
® Jens of thousands of concurrent writes
® Challenge for a filesystem

® [wo common write patterns

e N-N, N-I|

N-N File 10

Node |

Node 2 Node 3

(Multiple Files)

ARALLEL FILESYSTEM

N-1 File IO

Node |

Node 2 Node 3

X

Y,

S ASE TS A

e

PARALLEL FILESYSTEM

(Single File)

Milo Polte © November 09

N-1 Concurrent Writing Doesn’t Scale

Write bandW|dth of LANL’s MPI IO TEST

3500

3000

Write Bandwidth (MB/s)

500

2500

2000

1500

1000

. LANL 3.3 GB/s
/] ES
N-N
N-1

10 MB/s

15 20 25 30 35 40
Number of Processes

7

N-1: What’s the hold up?

® Contention within a single object

® | ocking, safety

® Small strides, small writes
® May be misaligned
® Stripe alignment

® RAID parity read-modify-write disaster

Carneﬁie Mellon
Parallel Data Laboratory

Ditch N-1? Not so fast....

® At HPC sites (LANL) many old codes use!VN I
\

® “Untouchables”

® Newly written codes still choosing N-|

® 2 of 8 open science applications on Roadrunner

® Common scientific formatting libraries are N-|

® Many benchmarks as well

e Half the PIO Benchmarking Consortium

® Designed to represent real apps

Came eie Mellon
rallel Data Laboratory

9 Milo Polte © November 09

How can we convert N-1 to N-N?

Node | Node 2 Node 3

How can we convert N-1 to N-N?

Node | Node 2 Node 3

Our solution:
PLFS

L]
PARALLEL FILESYSTEM

Milo Polte © November 09

Outline

® Motivation
® PLFS Design

® Evaluation
® Write Speeds in PLFS
® Read Speeds in PLFS

® Metadata Rates in PLFS

® Future Work

® Conclusions

Carneﬁie Mellon
Parallel Data Laboratory

Design of a checkpoint interposition layer

Requirement Solution

Extreme parallelism Decouple writers to individual files

Fast, efficient writes Write in a log structured manner

No application changes [Expose POSIX filesystem interface

Portable across filesystems |Implement as a ‘stackable’ filesystem

Low comp. node footprint [Use existing parallel FS storage

Using PLFS

® PLFS is implemented as a FUSE filesystem
® Mounted on top of an existing parallel filesystem

® Example: On every node, mount as
$ plfs ~/mnt/plfs -plfs backend=/mnt/scratch
® Checkpoints write to ~/mnt/plfs

® PLFS stores data in parallel filesystem /mnt/scratch

Applications write checkpoints to PLFS the
same as they wrote to the parallel filesystem

Carnegie Mellon
ParaIIeFData Laboratory

PLFS Decoupling

® Processes open a file foo’ in PLFS mount point

® PLFS mkdir’s directory foo/’ in underlying filesystem

® PLFS mkdir’s ‘foo/<hostname>/" in underlying filesystem
® Processes start writing to foo’ in PLFS

® PLFS opens a data log per writer, begins appending

® PLFS writes a index file per host

/———'

— f09/ i
/

host1/ host?2 host3/

e ~N
/\)
data.131 data.132 data.279 data.281 data.132 1 data.148
index [T index [N RN .

\'s —— MioPolte ©November 09

Review: Decoupled Layout

hostl host?2 host3

SO
PLFS Virtual Layer
\ P

foo

Underlying Parallel FiIesysteml

hostl/ host2/

« ~
data.131 data.132 data.279 data.281 4.1 93> data.148
BN incex [T ndex [N (I L1

index

Milo Polte © November 09

Outline

® Motivation
® PLFS Design

® Evaluation

® Write Speeds in PLFS
® Read Speeds in PLFS

® Metadata Rates in PLFS

® Future Work

® Conclusions

Milo Polte © November 09

PLFS converts N-1 to N-N speeds

Write bandwidth of LANLs MPI-IO-TEST

35000

LANL
30000 | /] ES

25000

20000

15000 r

Write Bandwidth (MB/s)

10000

to PLFS
direct to // FS ||

N-N
N-1
N-1

5000

T

0 1000 2000 3000 4000 5000 6000 7000 8000

Cm“% Number of Processes
Parallel v ata cavurawus y

18

Writes Evaluated Extensively

® GPFS, Lustre, Panfs filesystems
® Applications and 1O Kernels

° Synthetlc Checkpoint Benchmarks
1000 R —

150X

—
o
o

5-150x improvements

Bigger improvements
I I 24 with more writers
1

BTIO Chombo FLASH LANL 1 LANL 2LANL3 QCD

Carnegie Mellon
Parallel Data Laboratory

Speedup (X)

RN
o

19

Alignment and Write Size

® Small strided writes induce contention

® Hurt caching, buffering

® Misaligned writes use resources inefficiently
® False sharing

® RAID parity read-modify-write problem

Carnegie Mellon
Parallel Data Laboratory

20 Milo Polte © November 09

LBNL’s PatternlO

1000

900 | HU LT

800 r

700 r

-4k block “-.u--- "Wlth‘ou.t .

600 r

Q
£
é { aligned
N ~PLFS
& 400 | Unaligned
3
T 300 |
c 4 .‘.
200 |, PLFS makes alignment and
100 L blocksize irrelevant!
. With PLFS -+
oF ' L . PanFS *
0 1 > 2 . .

Carnegie M¢ . .
Parallel Data Write Size (MB)

21 Milo Polte © November 09

“Zero-Effort” Improvement For Real Apps

900 : ' , :

PLFS, MPI-I0 =——f—
Without PLFS, Bulkio
800 |Without PLFS, MPI-IO

LANL App that

simulates wiping out
the dinosaurs with a

700
- meteor
é 600 |
; 500 | Bulkio was a 10k line
2 library written just
T . .
§ 007 to improve this app
2 300t . .
5 PLFS is 3k lines,

200 | benefits from the

FUSE approach

100 ¢

0 100 200 300 400 500 600 700 800 900
Number of Processors

Carnegie Mellon
Parallel Data Laboratory

22 Milo Polte © November 09

Outline

® Motivation
® PLFS Design

® Evaluation
® Write Speeds in PLFS
® Read Speeds in PLFS

® Metadata Rates in PLFS

® Future Work

® Conclusions

Carnegie Mellon
Parallel Data Laboratory

23

What about the read path?

® Checkpoint is ‘write once, read maybe’
® PLFS readers read in indices, remap requests
® VWe're writing in a log structured way

® Can’t this hurt reads!?

Carneﬁie Mellon
Parallel Data Laboratory

24 Milo Polte © November 09

Read Speed Improved by PLFS?

Read bandW|dth of LANLs MPI-IO-TEST

1000
Nlth PLFS ——
Without PLFS F—d—t

800 r

Ilj H”

Ill!
600 |I |

|1. v
IR

400

Read Bandwidth (MB/s)

(falloff due to strong scaling,
shrinking log files)

——

0 100 200 300 400 500 600 700 800

Carnegic Number of Original HWriters
Parallel Data Laboratory

200

25

Read Speed Explanation (I)

® Checkpoints don’t write randomly
® Examined write traces of evaluated applications

® |n every case, processes wrote to monotonically
increasing logical offsets

® Creates offset-sorted logs

Carneﬁie Mellon
Parallel Data Laboratory

26 Milo Polte © November 09

Read Speed Explanation (ll)

® Checkpoints aren’t read randomly either
® Restart and archive read sequentially

® PLFS reads from many files at once

® Gets more filesystem resources than N-|

® Next byte always in read-ahead buffer of some file

114 |8 ([10][13] ----- | 11 4|8 (10|13} | 14| 8 [10][13 |-
Log 1 S Log 1 e e
og2 || 2|8 |8 |[2|"] gz | 2]/ 88|24] gz | 2| 8|[8|2 4])
| ————— —————————— ————— |

3|79 ||[11]15]) - 3|7 |9 |[[11]15]) -

Log 3 Log 3 Log 3
Clent | | | | | §...... Clent | + |~ | | F..... | Clent | .| 5 [2|4 &F
Memory Memory ! 2 | Memory ! 2 8 4 °

camegemaon A client reading sequentially from offset-sorted logs

ParalleFData Laboratory

27 Milo Polte © November 09

Outline

® Motivation
® PLFS Design

® Evaluation
® Write Speeds in PLFS
® Read Speeds in PLFS

® Metadata Rates in PLFS

® Future Work

® Conclusions

Cameﬁie Mellon
Parallel Data Laboratory

28

Metadata operations performance

® Recall: A PLFS file is really a directory

® Chmods, Chowns, Chgrps, Utimes, etc.

® Use the container or a special access file

® Stat can use access file for permissions, ownership
® VWhat about size? Modified time!?
® Have to stat every data log!

® Expensive with thousands of independent logs!

Carnegie Mellon
ParaIIeFData Laboratory

29 Milo Polte © November 09

Stat Optimization

® Containers have special metadata subdirectory

® On close, writers make metadata/host.B.L.T

® B = blocks of capacity
® | = last offset (i.e. file size)

® T = timestamp of last write (mtime)

® Stat can now be implemented with a readdir

® |f writers are still open, have to use slow path

Carnegie Mellon
ParaIIeFData Laboratory

30 Milo Polte © November 09

Stat Rates

Stat Time (s)

Carnegie Mellon
Parallel Data Laboratory

PLFS Open File =——t—
| PLFS Closed File =——¥—
L PanFS Closed File ==

0 100 200 300 400 500
Number of Writers

600

31

Milo Polte © November 09

Remaining Challenges and Future Work

® First open invokes thousands of sub-file creates

® |nc

ex reprocessing overhead in read-write mode

® Oc

d read patterns? Data analysis!?

® Faster stat of open files

® 1s -1 of growing file

Carneﬁie Mellon
Parallel D

ata Laboratory

32 Milo Polte © November 09

Future Work: PLFS + HDFS

C

® ‘Cloud’ filesystems gaining prevalence

® High resilience but often lack important semantics

e HDEFS:

® No concurrent writers
® No reopen for write

® Could be achieved by ‘decoupling’ every open

® Use PLFS to add semantics to Cloud Filesystems

® See me at poster

eie Mellon

arne
ParalleFData Laboratory

33 Milo Polte © November 09

Conclusions

® Drastically improves performance of N-|

chec

® Wor

Kpointing

<s on multiple parallel filesystems

® No application, filesystem modifications

® Does not penalize checkpoint reading

® Potential to enrich semantics of cloud filesystems

® Downloadable at:
http://sourceforge.net/projects/plfs/

Carnegie Mellon
ParaIIeFData Laboratory

34

